
Towards a

heterogeneous computing farm
for the

CMS High Level Trigger

Andrea Bocci1, Vincenzo Innocente1, Matti
Kortelainen2, Felice Pantaleo1, Marco Rovere1

1 CERN, 2 Fermilab

On behalf of the CMS Collaboration

March 13th, 2019 ACAT 2019 - Towards a heterogeneous computing farm for the CMS HLT 8

the High Luminosity LHC

higher luminosity
➔ 2.5 × ~ 4 ×

higher detector
readout rate

➔ 5 × ~ 7.5 ×

March 13th, 2019 ACAT 2019 - Towards a heterogeneous computing farm for the CMS HLT 14

we have a problem !

● higher pileup
● optimistic extrapolation: × 3

● new detectors
● based on MC: × 1.3

● higher L1 trigger rate
● design: × 7.5

● “Phase 2” HLT resource needs
● optimistically … × 30

● expected improvements in CPUs
● optimistic: × 4

● realistic: × 2

March 13th, 2019 ACAT 2019 - Towards a heterogeneous computing farm for the CMS HLT 32

looking ahead

● get production ready
● towards a possible deployment in Run 3

● integrate in the “oUcial” CMSSW releases
● CUDA-based framework

● pixel local reconstruction, track and vertices

● calorimeters’ local reconstruction

● full tracking

● investigate diTerent topologies
● and communication / oVoad models

● a new programming model
● GPU/CPU code sharing and reuse

remote accelerator units ?

Blter units with accelerators ?

builder units
with accelerators ?

Patatrack:
Accelerated Pixel Track reconstruction in CMS

Andrea Bocci1, Vincenzo Innocente1, Matti Kortelainen2,
Felice Pantaleo1, Roberto Ribatti3,
Marco Rovere1, Gimmy Tomaselli3

1CERN – Experimental Physics Department, 2FNAL,
3Scuola Normale Superiore di Pisa

felice@cern.ch 1

Patatrack Pixel Reconstruction Workflow
• Full Pixel Track reconstruction in CMSSW

• from Raw data decoding to
Primary Vertices determination

• Raw data for each event is transferred to
the GPU initially (~250kB/event)

• At each step data can be transferred to CPU
and used to populate “legacy” event data

• The standard validation is fully supported
• Integer results are identical
• Small differences in the results of floating point

can be explained by differences in re-association

11

Doublets
• The local reconstruction produces hits

• Doublets are created opening a window depending on the tracking region/beamspot and layer-pair

• The cluster size along the beamline can be required to exceed a minimum value for barrel hits connecting to an endcap layer
• Hits within the bins are connected to form doublets if they pass further “alignment cuts” based on their actual

position

• In the barrel the compatibility of the cluster size along the beamline between the two hits can be required

• The cuts above reduce the number of doublets by an order of magnitude and the combinatorics by a factor 50

12

Cellular Automaton-based Hit Chain-Maker

The CA is a track seeding algorithm designed for
parallel architectures
It requires a list of layers and their pairings

• A graph of all the possible connections between
layers is created

• Doublets aka Cells are created for each pair of layers, in parallel at the same time
• Fast computation of the compatibility between two connected cells, in parallel
• No knowledge of the world outside adjacent neighboring cells required, making it easy to

parallelize

13

• Better efficiency and fake
rejection wrt previous algo

• Since 2017 data-taking has
become the default track
seeding algorithm for all the
pixel-seeded online and
offline iterations

• In the following, at least four hits are required, but triplets can be kept to recover
efficiency where geometric acceptance lacks one hit

CA compatibility cuts

• The compatibility between two cells is
checked only if they share one hit

• AB and BC share hit B
• In the R-z plane a requirement is

alignment of the two cells

• In the cross plane the compatibility
with the beamspot region

14

Fits
Pixel track “fit” at the HLT is still using 3 points for quadruplets and
errors on parameters are loaded from a look-up table[eta][pT]

The Patatrack Pixel reconstruction includes two Multiple Scattering-
aware fits:

• Riemann Fit

• Broken Line Fit

They allow to better exploit information coming from our 4-layer
pixel detector and improve parameter resolutions and fake rejection

16

Performance Definitions
Physics performance:
• 20000 MC ttbar events <PU> = 50, design conditions, 25ns, sqrt(s)=13TeV
• Matching of reconstructed tracks with simulated ones requires that all hits of the

reconstructed track come from the same simulated track
• Efficiency: number of matched reconstructed tracks divided by number of simulated tracks
• Fake Rate: number of non-matched reconstructed tracks divided by number of

reconstructed tracks
• Efficiency is computed only with respect to the hard scatter.
• Efficiency has the following implicit cut: |d0| < 3.5 cm additionally to the cuts quoted in

the plots
• Duplicate is a reconstructed track matching to a simulated track that itself is matched to

>= 2 tracks

20

Physics Performance - Efficiency

Track reconstruction efficiency as a function of simulated track η,
pT, and production vertex radius.

21

Physics performance - Duplicates

22
Track reconstruction duplicate rate as a function of reconstructed
tracks η, pT

Physics performance – Fakes

23

Track reconstruction fake rate as a function of reconstructed tracks η,
pT

Physics Performance – Fit Pulls

24

σ - Reference σ - Broken Line σ - Riemann Fit

d0 0.84 1.32 1.18

dz 0.97 1.28 1.20

Physics Performance – Fit Pulls

25

σ - Reference σ - Broken Line σ - Riemann Fit

qoverp 0.99 0.99 0.72

θ 1.29 1.33 1.22

φ 1.02 1.28 1.27

Physics Performance - Resolutions

26
Track resolution of the transverse impact parameter as a function of
simulated track η and pT

Physics Performance - Resolutions

Track resolution of the longitudinal impact parameter as a function
of simulated track η and pT

27

Physics Performance - Resolutions

Track reconstruction resolution of pT as a function of simulated
track η and pT

28

Computational Performance

29

Pixel reconstruction consumers can either work directly on the
GPU or ask for a copy of the tracks and vertices on the host

Computational Performance

Pixel reconstruction consumers can either work directly on the
GPU or ask for a copy of the tracks and vertices on the host

30

http://trackreco.github.io/ !
http://computing.fnal.gov/hepreco-scidac4/ 	

mkFit Project: Speeding up particle track
reconstruction using a vectorized and
parallelized Kalman Filter algorithm!

G. Cerati1, P. Elmer3, B. Gravelle5,!
M. Kortelainen1, S. Krutelyov4, S. Lantz2,!

M. Masciovecchio4, K. McDermott2, B. Norris5,
A. Reinsvold Hall1, D. Riley2, M. Tadel4,

P. Wittich2, F. Würthwein4, A. Yagil4 !
!

1. FNAL 2. Cornell 3. Princeton 4. UCSD 5. Oregon!

A. Hall! Connecting the Dots 2019! 1!

Parallelized KF Tracking Project!
•  Ongoing project for 3+ years!
•  Mission: adapt traditional Kalman Filter (KF) tracking algorithms

to maximize usage of vector units and multicore architectures!
–  Testing on Intel Xeon and Intel Xeon Phi !
–  Longer term: adapt algorithm for GPUs (not covered today)!

•  Achievements shown today: !
–  Effective use of vectorization and multi-thread scaling !
–  Physics performance comparable to offline CMS reconstruction!

•  Aim: Test algorithm online in Run 3 software-based High Level
Trigger (HLT), extend to HL-LHC CMS geometry!

A. Hall! Connecting the Dots 2019! 6!

See project website
for details:

http://trackreco.github.io/	

Using the Kalman Filter !
Benefits of the Kalman Filter for
track finding/fitting:!
•  Robust handling of multiple

scattering, energy loss, and other
material effects !

•  Widely used in HEP!
•  Demonstrated physics

performance!
!
Two step process: !
1.  Propagate the track state from

layer N-1 to layer N (prediction) !
2.  Update the state using the

detector hit (measurement) on
layer N!

A. Hall! Connecting the Dots 2019! 8!

Predicted track state !
Detector measurement !
Updated track state!

Track building in a nutshell!
•  Start with a seed track !
•  Propagate track state to the next

detector layer !
•  Find detector hits near projected

intersection of track with layer!
–  Problem of combinatorics: could

find 0 hits, 1 hit, or several hits !
•  Select best fit track-hit combinations

as track candidates !
–  Update estimated state of all track

candidates with new hit!
–  At each layer, the number of possible

track candidates per seed increases!
•  Iterate!

A. Hall! Connecting the Dots 2019! 9!

Parallelization and Vectorization!
•  Task scheduling is handled via TBB library from Intel!
•  Parallelization at multiple levels!

-  parallel for: N events in flight!
- parallel for: 5 regions in η in each event!

- parallel for: seed-driven batching, 16 or 32 seeds per
batch!

•  Vectorized processing of individual track candidates where
possible!
–  Using both compiler vectorization and the Matriplex library !

A. Hall! Connecting the Dots 2019! 10!

Matriplex Library!
•  Custom library for vectorization of small matrix operations !
•  “Matrix-major” representation designed to fill a vector unit with n

small matrices and operate on each matrix in sync !
•  Includes code generator to generate C++ code or intrinsics for

matrix multiplication of a given dimension !
–  Can be told about known 0 and 1 elements matrices to reduce

number of operations by up to 40%!
•  Used for all Kalman filter related operations !

A. Hall! Connecting the Dots 2019! 11!

CMS Iterative Tracking!
•  To reduce combinatorics, CMS

performs track finding over
several iterations!
–  Start with tracks that are easiest

to find, end with the most
difficult tracks!

–  Between each iteration remove
hits that have been associated to
a track!

•  mkFit focuses on initial iteration:!
–  Seed tracks with 4 hits and no

beam-spot constraint!
–  Find most prompt tracks!

•  Could easily be extended to
include other iterations!

A. Hall! Connecting the Dots 2019! 16!

Sim. track prod. vertex radius (cm)
0 10 20 30 40 50 60

Tr
ac

ki
ng

 e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2
=35)〉PU〈 event tracks (tt

 > 0.9 GeV,
T

p
| < 2.5η|

Initial
+HighPtTriplet
+LowPtQuad
+LowPtTriplet
+DetachedQuad
+DetachedTriplet
+MixedTriplet
+PixelLess
+TobTec
+JetCore
+Muon inside-out
+Muon outside-in

 13 TeVCMS Simulation preliminary

Efficiency of mkFit!
•  Shown here: algorithm-level efficiency for long (� 12 hit) tracks!
•  mkFit is at least as efficient as CMSSW, even for low pT tracks!

–  Crucial for accurate particle flow reconstruction!
•  Much of the effort in the last year has focused on achieving this

important milestone!
•  Next steps: improve efficiency for short tracks. Development for this

is already in progress!

A. Hall! Connecting the Dots 2019! 20!

CMSSW!
!

MkFit!
TTBar PU 70!

Speedup vs # of Threads!

A. Hall! Connecting the Dots 2019! 22!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!
•  Turbo boost disabled!

Number of Threads!

Intel Xeon!
 Skylake SKL (Gold 6130)!

Intel Xeon Phi !
Knight’s Landing KNL (7210)!

Excellent scaling at low threads –
independent of exact architecture!

30!
25!
20!
15!
10!
5!
0!Sp

ee
du

p
pe

r
ev

en
t!

10 20 30 40 50 60 !
Number of Threads!

80!
70!
60!
50!
40!
30!
20!
10!
0!Sp

ee
du

p
pe

r
ev

en
t!

50 100 150 200 250!

Speedup vs size of vector units!
Algorithm uses vectorization successfully-
60 - 70% of code is vectorized!!

A. Hall! Connecting the Dots 2019! 23!

Intel Xeon SKL!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!

Matriplex Vector Width (floats)!
2 4 6 8 10 12 14 16 !

16!
14!
12!
10!
8!
6!
4!
2!
0!Sp

ee
du

p
pe

r
ev

en
t!

Speedup vs # of events in flight!

A. Hall! Connecting the Dots 2019! 24!

Intel Xeon SKL!

Number of threads!

Can get speedups up to x25 using
multiple events in flight!

30!
25!
20!
15!
10!
5!
0!Sp

ee
du

p
pe

r
ev

en
t!

Number of threads!
10 20 30 40 50 60 !

•  Results include time for full loop, including I/O, handling the seeds, etc !
•  Measured using standalone configuration!
•  Previous plots used only a single event in flight!

Integrated Timing Performance!
Technical Details!
•  Run mkFit within CMSSW!
•  mkFit used for building only!
•  Single-thread test using TTBar PU 50 !
Results!
•  Track building is 4.3x faster!
•  40% of time is spent in data format

conversions – actual track finding is
7x faster !

•  Track building now takes less time
than track fitting !

•  Even larger speedup if multiple
threads are used!

A. Hall! Connecting the Dots 2019! 25!

CMSSW!
!

MkFit!

* Measured on SKL, mkFit
compiled with AVX-512 !

